Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NanoImpact ; 27: 100413, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35940564

RESUMO

In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.


Assuntos
Nanotubos de Carbono , Coroa de Proteína , Animais , Caenorhabditis elegans , Grafite , Nanotubos de Carbono/toxicidade , Coroa de Proteína/metabolismo , Soroalbumina Bovina/metabolismo , Distribuição Tecidual
2.
Chemosphere ; 278: 130421, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33839394

RESUMO

Graphene oxide (GO) is a promising and strategic carbon-based nanomaterial for innovative and disruptive technologies. It is therefore essential to address its environmental health and safety aspects. In this work, we evaluated the chemical degradation of graphene oxide by sodium hypochlorite (NaClO, bleach water) and its consequences over toxicity, on the nematode Caenorhabditis elegans. The morphological, chemical, and structural properties of GO and its degraded product, termed NaClO-GO, were characterized, exploring an integrated approach. After the chemical degradation of GO at room temperature, its flake size was reduced from 156 to 29 nm, while NaClO-GO showed changes in UV-vis absorption, and an increase in the amount of oxygenated surface groups, which dramatically improved its colloidal stability in moderately hard reconstituted water (EPA medium). Acute and chronic exposure endpoints (survival, growth, fertility, and reproduction) were monitored to evaluate material toxicities. NaClO-GO presented lower toxicity at all endpoints. For example, an increase of over 100% in nematode survival was verified for the degraded material when compared to GO at 10 mg L-1. Additionally, enhanced dark-field hyperspectral microscopy confirmed the oral uptake of both materials by C. elegans. Finally, this work represents a new contribution toward a better understanding of the links between the transformation of graphene-based materials and nanotoxicity effects (mitigation), which is mandatory for the safety improvements that are required to maximize nanotechnological benefits to society.


Assuntos
Grafite , Nanoestruturas , Animais , Caenorhabditis elegans , Grafite/toxicidade , Nanoestruturas/toxicidade , Óxidos/toxicidade , Hipoclorito de Sódio/toxicidade
3.
Chemosphere ; 243: 125316, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31733537

RESUMO

Graphene oxide (GO) is part of a new set of nanomaterials with particular characteristics related to its nanoscale size. Due to this feature, it presents high reactivity and other contaminants present in the environment could bind to them and affect its intrinsic toxicity. The metabolic effects of such nanomaterials and their combination with two common pollutants, zinc and cadmium, on the freshwater fish Geophagus iporangensis are analyzed. Moreover, metabolic rate and ammonia excretion were used as bioindicators to measure metabolic changes. Fishes were exposed for 24 h in filtered tap water to different concentrations of GO (0.5; 1.0; 2.0 and 4.0 mg L-1), Zn (0.5; 1.0; 2.0; 4.0 and 10.0 mg L-1) and Cd (0.1; 0.5; 1.0; 2.0 and 4.0 mg L-1). Combined effects were verified using the same concentrations of trace elements added to 1.0 mg L-1 of GO. Exposure to GO and Cd resulted in a decrease of metabolic rate in G. iporangensis, by about 30% compared to control means, in the highest concentration tested (4.0 mg L-1). However, zinc exposure in the highest concentration (10 mg L-1) raised metabolic rate to around three times that of the control group. Ammonia excretion was not affected by exposure to GO and Cd. In contrast, exposure to Zn at 10 mg L-1 raised the rate to around 47%. The combined exposure of GO and Zn intensified the effects of the trace element, inducing responses in both biomarkers at lower concentrations and demonstrating that the interaction between elements increases zinc's effects. The combination Cd + GO only affects metabolic rate. Thus, this metabolic rate alone reveals that combined exposure potentiates effects of trace elements on fish metabolism.


Assuntos
Peixes/fisiologia , Grafite/toxicidade , Oligoelementos/toxicidade , Poluentes Químicos da Água/toxicidade , Amônia/metabolismo , Animais , Cádmio/toxicidade , Biomarcadores Ambientais , Peixes/metabolismo , Água Doce , Alimentos Marinhos , Oligoelementos/análise , Poluentes Químicos da Água/análise , Zinco/toxicidade
4.
Chemosphere ; 223: 157-164, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30776760

RESUMO

Graphene oxide (GO) has been evaluated for application in environmental remediation and pollution control strategies. However, the side effects caused by the interactions of GO with classical pollutants in aquatic environments are still largely unknown. In this work, the ecotoxicological effects of GO, cadmium, zinc and the interactions between GO and these trace elements (co-exposure) were evaluated through acute toxicity tests and routine metabolism (i.e., oxygen consumption and ammonia excretion) in Palaemon pandaliformis (shrimp). After 96 h of exposure, GO did not present acute ecotoxicity at concentrations up to 5.0 mg L-1. However, the association of GO with Cd or Zn increased the toxicity of these trace elements as demonstrated by the decrease in LC50 values. The 96 h LC50 of Cd associated with GO was 1.7 times less than the 96 h LC50 of Cd alone. Similarly, the 96 h LC50 of Zn associated with GO was 1.8 times less than the 96 h LC50 of Zn alone. Additionally, the co-exposure of GO with trace elements impaired the routine metabolism of P. pandaliformis. Finally, the GO potentiated the ecotoxicological effects of Cd and Zn in the shrimp model. Future research on this emerging nanomaterial should focus on its use and disposal in aquatic ecosystems.


Assuntos
Ecotoxicologia/métodos , Grafite/toxicidade , Oligoelementos/toxicidade , Animais , Cádmio , Sinergismo Farmacológico , Dose Letal Mediana , Palaemonidae/metabolismo , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade , Zinco
5.
Ecotoxicol Environ Saf ; 165: 136-143, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195205

RESUMO

The increasing production and use of nanomaterials is causing serious concerns about their safety to human and environmental health. However, the applications of titanium dioxide nanoparticles (TiO2NP) and multiwalled carbon nanotubes (MWCNT) hybrids has grown considerably, due to their enhanced photocatalytic efficiency. To our knowledge, there are no reports available to the scientific community about their toxicity. In this work, we perform a toxicity assessment of TiO2NP and TiO2-MWCNT nanohybrid materials using Zebrafish embryos standardized 96 h early life stage assay, under different exposure conditions (with and without UV light exposure). After exposure the parameters assessed were acute toxicity, hatching rate, growth, yolk sac size, and sarcomere length. In addition, µ-probe X-ray fluorescence spectroscopy (µ-XRF) was employed to observe if nanoparticles were uptaken by zebrafish embryos and consequently accumulated in their organisms. Neither TiO2NP nor TiO2-MWCNT nanohybrids presented acute toxicity to the zebrafish embryos. Moreover, TiO2NP presents sublethal effects for total length (with and without UV light exposure) on the embryos. This work contributes to the understanding of the potential adverse effects of the emerging nanohybrid materials towards safe innovation approaches in nanotechnology.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas/toxicidade , Nanotubos de Carbono/toxicidade , Titânio/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Humanos , Nanotecnologia , Processos Fotoquímicos , Sarcômeros/efeitos dos fármacos , Espectrometria por Raios X , Raios Ultravioleta , Peixe-Zebra/embriologia
6.
Sci Total Environ ; 607-608: 1479-1486, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28764138

RESUMO

In this work, industrial grade multi-walled carbon nanotubes (MWCNT) were coated with humic acid (HA) for the first time by means of a milling process, which can be considered an eco-friendly mechanochemical method to prepare materials and composites. The HA-MWCNT hybrid material was characterized by atomic force microscopy (AFM), scanning electron microscopies (SEM and STEM), X-ray photoelectron spectroscopy (XPS), termogravimetric analysis (TGA), and Raman spectroscopy. STEM and AFM images demonstrated that the MWCNTs were efficiently coated by the humic acid, thus leading to an increase of 20% in the oxygen content at the nanotube surface as observed by the XPS data. After the milling process, the carbon nanotubes were shortened as unveiled by SEM images and the values of ID/IG intensity ratio increased due to shortening of the nanotubes and increasing in the number defects at the graphitic structure of carbon nanotubes walls. The analysis of TGA data showed that the quantity of the organic matter of HA on the nanotube surface was 25%. The HA coating was responsible to favor the dispersion of MWCNTs in ultrapure water (i.e. -42mV, zeta-potential value) and to improve their capacity for copper removal. HA-MWCNTs hybrid material adsorbed 2.5 times more Cu(II) ions than oxidized MWCNTs with HNO3, thus evidencing that it is a very efficient adsorbent material for removing copper ions from reconstituted water. The HA-MWCNTs hybrid material did not show acute ecotoxicity to the tested aquatic model organisms (Hydra attenuata, Daphnia magna, and Danio rerio embryos) up to the highest concentration evaluated (10mgL-1). The results allowed concluding that the mechanochemical method is effective to coat carbon nanotubes with humic acid, thus generating a functional hybrid material with low aquatic toxicity and great potential to be applied in environmental nanotechnologies such as the removal of heavy metal ions from water.


Assuntos
Cobre/isolamento & purificação , Substâncias Húmicas , Nanotubos de Carbono , Poluentes Químicos da Água/isolamento & purificação , Animais , Daphnia , Ecotoxicologia , Íons , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...